首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   7篇
  国内免费   2篇
测绘学   6篇
大气科学   1篇
地球物理   19篇
地质学   36篇
海洋学   5篇
自然地理   2篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   6篇
  2018年   8篇
  2017年   8篇
  2016年   8篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   5篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  2001年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
31.
A small intrusive fresh gabbroic mass intrudes the Neoproterozoic metasediments and Dokhan volcanics of Wadi Az Zarib area, Central Eastern Desert. It is composed of hornblende gabbros and leuco-hornblende gabbros. Their petrography, opaque mineralogy, and geochemistry are addressed to elucidate their tectonic setting and petrogenesis. They represent a subduction-related calc–alkaline magma that evolved in an island arc setting. In terms of maturity, the supposed arc represents an intermediate stage between continental arc and active continental margin. Thermobarometry and physical–chemical data of the parent magma as deduced from compositions of amphiboles, biotite, and plagioclase indicate crystallization temperatures of 931–825 °C at pressures of 6.16–4.01 kbar and H2Omelt of 6.4–5.2 wt%. Data, as presented, argue in favor of fractional crystallization mechanism to be accounted to the present suite to interpret the observed variations. The evolution of the suite from hornblende gabbros to leuco-hornblende gabbros was accompanied by decreasing of MgO, CaO, Cr, and Ni with simultaneous increasing of Al2O3, TiO2, Na2O, K2O, Ba, Rb, Sr, La, and Ce. Residuals calculated during mass balance fractional crystallization modeling suggest that brown and green hornblendes are the main fractionated phases which derived the melt composition towards the leuco-hornblende gabbros.  相似文献   
32.
Effects of sheet flow rate and slope gradient on sediment load   总被引:2,自引:0,他引:2  
Sheet erosion is known as one of the most important forms of erosion, particularly in agricultural land. The purpose of this study was to investigate the effect of flow rate and slope gradient on runoff and sediment discharges in two different soils. Experiments were conducted using a tilting flume facility with the test area of 0.2?×?1.0 m. Overall, 24 experiments on two soils (clay loam and sandy clay loam textures) including six flow rates (75, 100, 125, 150, 175, and 200 ml/s) and two slope gradients (1.5 and 2 %) were performed. The selected flow rates and flume slopes were generated to simulate sheet erosion. The results showed that for both soils and slopes, unit flow discharge (q) and sediment concentration increased with increasing flow rate; however, the effect of slope gradient on flow discharge depends on soil type. In addition, sandy clay loam exhibited higher values of q and sediment concentration and consequently, it showed greater amounts of sediment load. At the start of event, sediment concentration was high but it decreased to approach a steady state. In addition, the time needed to reach a steady state condition was shorter for sandy clay loam than that for clay loam soil and in lower flow rates than higher flow rates. For each soil and slope, there was a direct relationship between sediment load and flow rate. The result implied that the effect of slope gradient on sediment load was almost greater in sandy clay loam soil than clay loam soil. Moreover, the differences between sediment loads of two soils are enlarged at slope 2 %.  相似文献   
33.
Pharmaceutical compounds, widely produced and used all around the world, are partly responsible for the widespread water pollution in the environment. Carbamazepine (CBZ) is an antiepileptic drug that persists in the environment for many years. In the present study, we used the TiO2/UV, nanoparticulate zero‐valent iron (NZVI), and NZVI/H2O2 treatment processes to compare efficiency of CBZ removal from water. Influence of NZVI loading, H2O2 concentration, TiO2 loading, UV lamp power, and the matrix (distilled water and groundwater) on CBZ removal efficiency was evaluated using full factorial design. Results indicated that the NZVI/H2O2 process oxidized CBZ within 5 min. On the other hand, the NZVI process alone did not reduce CBZ concentration after 120 min of process time. The NZVI/H2O2 process was equally effective in CBZ removal from both distilled water and groundwater whereas the TiO2/UV process was less effective due to the presence of ions in groundwater. CBZ removal efficiency of the TiO2/UV process declined 30% when the matrix was changed from distilled water to groundwater. Negative divalent ions, i.e., and , were the main cause of reduction of CBZ removal efficiency from groundwater. It is likely that these two ions adsorb onto, and consequently prevent the superoxide anion and hydroxyl radical OH? from being generated on, the surface of the TiO2.  相似文献   
34.
The study of mantle lithosphere plays a key role to reveal predominant tectonic setting process of a region. The current geological and tectonic setting of Iran is due to the ongoing continental–continental collision of the Arabian and Eurasian plates. We applied a combined P and S receiver function analysis to the teleseismic data of nine permanent broadband seismic stations of the International Institute of Earthquake Engineering and Seismology located in different tectonic zones of Iranian plateau. More than 4 years of data were used to estimate the thickness of the crust and mantle lithosphere. According to our results, the crust is 50 km thick beneath the Zagros fold and thrust belt (ZFTB). We found the maximum Moho depth of approximately 70 km under the Sanandaj-Sirjan zone (SSZ) indicating the overthrusting of the crust of Central Iran onto the Zagros crust along the main Zagros thrust (MZT). Below the northeasternmost part of the Urumieh–Dokhtar Magmatic Arc (UDMA) and Central Iran, the Moho becomes shallower and lies at 40 km depth. Towards northeast, beneath the Alborz zone, the crust is 55 km thick. Based on S receiver functions, we provided new insights into the thickness of the Arabian and Eurasian lithospheres. The location of the boundary between these plates was estimated to be beneath the SSZ, which is slightly shifted northeastward relative to the surficial expression of the MZT. Furthermore, the Arabian plate is characterized by the relatively thick lithosphere of about 130 km beneath the ZFTB reaching 150 km beneath the SSZ, where the thickest crust was also observed. This may imply that the shortening across the Zagros is accommodated by lithospheric thickening. In contrast, UDMA and Central Iran are recognized by the thin lithosphere of about 80–85 km. This thin lithosphere may be associated with the asthenospheric upwelling caused by either lithospheric delamination or Neo-Tethys slab detachment beneath the Zagros collision zone.  相似文献   
35.
ABSTRACT

To answer the question “what has changed the surface temperatures of water bodies around Iran under climate change conditions,” Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) data with 9.2-km spatial resolution and monthly time step were evaluated. A significant increasing trend was obtained using Pearson’s correlation coefficient and Mann-Kendall trend test on data from the Caspian Sea (June) and the Southern Gulfs (September). High correlations of 0.69 and 0.97 between remotely sensed data and ERA-Interim reanalysis data were also obtained for June and September, respectively. To assess the impact of some climatic parameters on SST variability in those two months, zonal and meridional wind at 10 m, wind speed at 10 m, air temperature at 2 m, and mean sea level pressure were evaluated. High correlations between meridional wind and the Southern Gulf SST, and meridional wind and Caspian SST were ?0.86 and 0.75, respectively. Moreover, the results showed an important role of air temperature (0.96) and sea level pressure (?0.77) in the rising temperature trends of the Southern Gulfs. Wind speed was also detected in both regions as a booster of the trend.  相似文献   
36.
Experiments were conducted in an 8 m long,40 cm wide,and 60 cm deep re-circulating fiume with vegetated banks and gravel bed to study the effects of accelerating and decelerating flows on the flow stru...  相似文献   
37.
38.
Crude oil and source rock samples from one of the main oilfields of the Abadan Plain, Zagros, Iran were analyzed geochemically. Rock-Eval pyrolysis was conducted on Kazhdumi (Upper Cretaceous) and Gadvan (Lower Cretaceous) formations, which are the probable source rocks for the oil in the region. The results indicated that the Kazhdumi Formation can be classified as a fair-to-excellent source rock, while the Gadvan Formation can be identified as having poor-to-good source rock in the basin. Based on the cross-plots of HI versus OI and S2 versus TOC, types II and III kerogen were identified from studied source samples in the area. Determination of the main fraction percentages of the Sarvak and Fahliyan crude oils represented that the oils from the Sarvak reservoir are paraffinic-naphthenic and aromatic-intermediate, whilst that from the Fahliyan reservoir is paraffinic and paraffinic-naphthenic. Biomarker ratios of the saturated fractions of oil from both reservoirs indicate that the source rocks formed in reducing marine environments with carbonate-shale lithology. Furthermore, biomarker data helped to distinguish the degree of biodegradation in the studied oils. According to geochemical analysis, oil samples from the Fahliyan reservoir were generated at a higher thermal maturity than the Sarvak reservoir samples.  相似文献   
39.
This study suggests a novel approach to the retrieval of soil surface parameters using a single-acquisition single-configuration synthetic-aperture radar (SAR) system. Soil surface parameters such as soil moisture and surface roughness are key elements for many environmental studies, including Earth surface water cycles, energy exchange, agriculture, and geology. Remote sensing techniques, especially SAR data, are commonly used to retrieve such soil surface parameters over large areas. Several backscattering models have been proposed for soil surface parameters retrieval from SAR data. However, commonly, these backscattering models require multi configuration SAR data, including multi-polarization, multi-frequency, and multi-incidence angle. Here we propose a methodology that employs single-acquisition single-configuration SAR data for the retrieval of soil surface parameters. The originality is to use single-acquisition single-configuration SAR data to retrieve the soil surface parameters using an optimization approach by the genetic algorithm (GA); we have used the modified Dubois model (MDM) in HH polarization as the backscattering model. Three HH polarization and C band data sets from Quebec (Radarsat-1), Ontario (SIR-C), and Oklahoma (AIRSAR) were analyzed. The retrieved values of soil moisture and soil surface roughness were then compared to ground truth measurements with corresponding parameters. We employed diverse criteria, including the mean absolute error (MAE), the root mean square error (RMSE), the coefficient of performance (CP), and the correlation coefficient to investigate the performance of the proposed methodology. This analysis suggests the capability of the GA for the retrieval of soil surface parameters. Based on our findings, this method presents a viable alternative approach to the retrieval of soil surface parameters when only single-acquisition single-configuration SAR data is available.  相似文献   
40.
Seismic properties of isotropic elastic formations are characterized by the three parameters: acoustic impedance, Poisson's ratio and density. Whilst the first two are usually well estimated by analysing the amplitude variation with angle (AVA) of reflected P‐P waves, density is known to be poorly resolved. However, density estimates would be useful in many situations encountered in oil and gas exploration, in particular, for minimizing risks in looking ahead while drilling. We design a borehole seismic experiment to investigate the reliability of AVA extracted density. Receivers are located downhole near the targeted reflectors and record reflected P‐P and converted P‐S waves. A non‐linear, wide‐angle‐based Bayesian inversion is then used to access the a posteriori probability distributions associated with the estimation of the three isotropic elastic parameters. The analysis of these distributions suggests that the angular variation of reflected P‐S amplitudes provides additional substantial information for estimating density, thus reducing the estimate uncertainty variance by more than one order of magnitude, compared to using only reflected P‐waves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号